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We consider a computational algorithm for the solution of an inverse heat-conduc- 
tion boundary-value problem based on the replacement of one of the boundary condi- 
tions by a nonlocal condition. We present examples of our calculations for a one- 
dimensional model problem. 

Among the inverse problems of heat transfer [i], much attention has been given to inverse 
boundary-value problems of heat conduction. In problems of this kind thermal measurements 
made on one portion of the boundary of a specimen are to be used to recover the thermal load- 
ing on another portion of the boundary inaccessible to measurement. In the practical one- 
dimensional case (as our specimen we take a thin homogeneous rod with a thermally insulated 
lateral surface) the problem consists in solving the heat-conduction equation with a known 
initial temperature and a given temperature and thermal flow at one end. Such a problem be- 
longs to the class of problems conditionally correct in theTikhonov sense [I, 2]. To solve 
it approximately various computational algorithms may be applied [i, 3, 4] based on the use 
of integral boundary conditions and the schematic involved in A. N. Tikhonov's method of 
regu!arization. 

In the present paper we employ an approach involving a perturbation of the boundary con- 
ditions. In connection with stationary inverse boundary problems of heat conduction, modelled 
by means of a Cauchy problem for elliptic equations, such an approach was considered in [5]. 
To numerically solve the resulting nonlocal parabolic problem we apply the usual difference 
methods [6]. This allows for easy transition to nonlinear multidimensional problems. Dif- 
ference methods were applied earlier in [i, 7] to obtain an approximate solution of inverse 
boundary problems. The numerical calculations we present make it possible, in a certain sense, 
to indicate the working range of the methods when used to solve specified applied problems. 

Perturbed Problem. Let it be required to determine u(x, t) from the conditions 

a__u_u = a~u O < x < / ,  O < t < T ;  ( i )  
Ot Ox ~ 

u(x, 0)= Uo(X), O < x < / ;  (2) 

u(0, t)= ~p(t), 0 < t < T ;  (3) 

0---~-u (0, t ) =  0, 0 < t < T ,  ( 4 )  
Ox 

wherein it is assumed that all the thermophysical characteristics of the specimen are con- 
stant, the left end (x = 0) is thermally insulated, and at this end a temperature measure- 
ment is made. We note that the temperature (or thermal flux) can be measured at an arbitrary 
second point x* (0 < x* < ~) of the specimen. 

We seek an approximate solution ua(x , t) of the heat-conduction equation 

Ou____e_~ - -  02u-------~ , 0 < x < / ,  0 < t < T ,  (5) 
Ot Ox 2 

with the initial condition 

uc, (x, 0) = uo (x), 0 < x < l, ( 6 ) 
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Fig. I. Dependence of e(t) on the network 
employed with a = 10 -14 and o = i: Curves 
labeled I, 2, 3, and 4 for networks of 9 
5, 17 • 9, 33 x 17, and 65 • 33, respec- 
tively. 

and the boundary condition 

. Ou~ (0, t)=O, O < t <  T .  
Ox (7) 

Instead of the boundary condition (3), we consider a nonlocal condition connecting the 
solution at x = 0 and x = s 

ue (0, t) + ocu~ (l, t) = ~ (t). (8)  

In the initial problem with errors the functions u0(x) and ~(t) are specified; the value of 
the numerical parameter a > 0 in the nonlocal condition (8) is determined by averaging these 
errors. 

In contrast to the quasiinversion method used in [7], it is not the initial equation in 
Eqs. (5)-(8) that is perturbed, but only the boundary condition. Perturbation of the boundary 
(initial) conditions and not the equation itself is, in many problems of mathematical physics, 
a more natural procedure since the boundary (initial) conditions are often known approximately. 
A nonlocal perturbation of the initial condition in a retrospective inverse problem of heat 
conduction (a problem with reverse time) was considered in [8]. This approach was described 
in [5] in connection with stationary inverse boundary problems of heatconduction. 

A Difference Problem and Its Numerical Solution. We consider now the problem of numeri- 
cally solving the nonlocal problem (5)-(8). We introduce a uniform network ~ = mh ~ mx, 
where 

~h = {X~ = ih, h > O ,  i = 1, 2 . . . .  , M - - l ,  M h  = l}, 

m ~ = { t j = ] ~ ,  ~ > 0 ,  ] = 1 ,  2 . . . . .  N - - l ,  N x =  T}.  

We put the differential problem (5)-(8) into correspondence with a difference problem. We 
approximate Eq. (5) on ~ by an implicit difference scheme [6] Of the following kind: 

Yi+ ~ -~ Y{ = ~Ay~+ 1 + (! " ~ )  Aye, (9)  

where the usual notation of difference schemes is employed: 

y{= y(x,, tO, Ay{ = y~= Y~+'-- 

Approximating the initial condition (6), we have 

yo = ao (xO, x~ 6 cob- 

2y~ + y{_,  
h 2 

(lO) 

We approximate the boundary condition (7) for the solution [6] with second order in space 

oy'2'  " ( 1  - ~ ) y ~  = h 2 Yt, i = O. (ii) 
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Fig. 2. Relative accuracy s for different schemes ((33 • 17), a = I0-~): 
Curves i, 2, and 3 correspond to o values of 0.5, i, and 1.5, respectively. 

Fig. 3. Accuracy of the purely implicit scheme (o = i) versus the exact 
solution when the 33 • 17 network is used: curves !, 2, 3, and 4 correspond 
to k values of 8, 4, 4/3, and 2. 

In Eq. (ii) we have used 

y,; _ - Y{ yJ+  - -  y l  

h ' Y t = ' ~  

The n o n l o c a l  c o n d i t i o n  (8 )  l e a d s  t o  t h e  r e l a t i o n  

To solve the difference problem (9)-(12) at the (j + l)-st time layer we apply a specific 
algorithm involving a three-point segment (see [5, 9]) in which the nonloca! condition (12) 
is taken into account. 

Examples of Calculations. The computational algorithm proposed was tested on numerous 
examples. We present the results of our calculations, made on the B~SM-6 computer, for the 
model example (1)-(4), which has the exact solution 

(x, t):.=cos x exp - - ~ t  (13) 

for various values of the numerical parameter k. In the data presented below from our computa- 
tional experiment the input information is given exactly. Errors are only due to discretiza- 
tion of the differential problem and to round-off errors. An estimate of the effect of errors 
in prescribing the input information (u0(x) and ~ (t)) on the precision of the approximate 
solution requires a special investigation. Preliminary handling of the input information is 
of great significance here. Calculations were carried out for sufficiently small values of 
the parameter a, so that a perturbation of a boundary condition has not significance: ~ max 
lu~(~, t ) l  s 10 - l ~  

In Fig. i, for Eq. (13) with k : 4, T : 0.5, and ~ : 1 (Fourier number Fo : I), we show, 
for a = I0 -l~, how the accuracy e of the difference solution depends on the network size 
employed. The relative accuracy ~ is determined from the formula 

max Iu (x+, t J  - -  ui' J i l  
x c ~  h 

m~x ly{l 
x~co h 

We applied a purely implicit (o = I) scheme given by relations (9)-(12)o For the given sample, 
exact and approximate values of the thermal flux for two different networks, (33 • 17) and 
(65 • 33), for T = 0.5 and T = 0.25, are shown in Table i. The dependence of g on a is as 
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TABLE I. Accuracy of Thermal Flux 
Calculations at Certain Points 

~u lO q=Tx" 

T=0,5 

T=0,25 

Exact 
solution 

0,5655 
1,1256 
1,6748 
2,2079 
2,7198 
3,2054 
3,6602 

0,6598 
1,3133 
1,9541 
2,5761 
3,1732 
3,7399 
4,2705 

Network dimensions 
(33X 17) (65X 33) 

0,5710 0,5682 
1,1364 1,1310 

' 1,6907 1,6828 
2,2287" 2,2183 
2,7449 2,7323 
3,2345 3,2199 
3,6926 3,6764 

0,6662 0,6630 
1,3259 1,3t96 
1,9727 1,9634 
2,6003 2,5882 
3,2026 3,1879 
3,7738 3,7568 
4,3082 4,2893 

follows. For large ~ (more precisely, for large ~ max lu=(s t) I) the ~ error of the difference 
solution is large; subsequently, e decreases and, up to some sufficiently small ~, achieves a 
characteristic plateau. For small ~ the error again increases; this growth is determined 
by the effect of the approximation and round-off errors. In Fig. 2 we show the results of 
our calculations when different values of o are employed in the relations (9)-(12). Naturally, 
the scheme with o = 0.5, having second order of approximation also with respect to the time, 
yields higher accuracy for small t. The scheme with o = I has better asymptotic characteris- 
tics [6], which, in the given case, become apparent with the great accuracy at large times. 
It should be noted that the advantage of the symmetric scheme is again manifested in the vari- 
ous solutions. In particular, this scheme gives a very large accuracy on the solutions (13) 
for k = 2. The dependence of a on t for the purely implicit scheme is shown in Fig. 3 for 
the different solutions. We note, particularly, that for k = 2 and ~ = i the perturbation 
in the boundary condition (the term eue(s t)) is small since ue(s t) ~ 0. 

NOTATION 

u(x, t), temperature; s rod length; T, time interval; u s, approximate solution; ~, regu- 
larization parameter; ~, difference network; u0(x), initial temperature of the rod; ~(t), rod 
temperature at end x = 0; yi 3, network solution; A, second difference; o, weight of difference 
scheme; e, relative error. 
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